Mof衍生的杂原子掺杂多孔碳作为燃料电池中氧还原反应的高效电催化剂的最新进展
Recent Progress in MOF‐Derived, Heteroatom‐Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells
Advanced Functional Materials ( IF 19.924 ) Pub Date : 2017-12-20 , DOI: 10.1002/adfm.201704537
Liu Yang 1 , Xiaofei Zeng 1 , Wenchuan Wang 1 , Dapeng Cao 1
Affiliation
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; State Key Laboratory of Organic-Inorganic Composites; Beijing University of Chemical Technology; Beijing 100029 P. R. China
Currently, developing nonprecious‐metal catalysts to replace Pt‐based electrocatalysts in fuel cells has become a hot topic because the oxygen reduction reaction (ORR) in fuel cells often requires platinum, a precious metal, as a catalyst, which is one of the major hurdles for commercialization of the fuel cells. Recently, the newly emerging metal‐organic frameworks (MOFs) have been widely used as self‐sacrificed precursors/templates to fabricate heteroatom‐doped porous carbons. Here, the recent progress of MOF‐derived, heteroatom‐doped porous carbon catalysts for ORR in fuel cells is systematically reviewed, and the synthesis strategies for using different MOF precursors to prepare heteroatom‐doped porous carbon catalysts, including the direct carbonization of MOFs, MOF and heteroatom source mixture carbonization, and MOF‐based composite carbonization are summarized. The emphasis is placed on the precursor design of MOF‐derived metal‐free catalysts and transition‐metal‐doped carbon catalysts because the MOF precursors often determine the microstructures of the derived porous carbon catalysts. The discussion provides a useful strategy for in situ synthesis of heteroatom‐doped carbon ORR electrocatalysts by rationally designing MOF precursors. Due to the versatility of MOF structures, MOF‐derived porous carbons not only provide chances to develop highly efficient ORR electrocatalysts, but also broaden the family of nanoporous carbons for applications in supercapacitors and batteries.
MOF衍生杂原子掺杂的多孔碳作为燃料电池中氧还原反应的高效电催化剂的最新进展
当前,开发非贵金属催化剂来代替燃料电池中的Pt基电催化剂已成为热门话题,因为燃料电池中的氧还原反应(ORR)通常需要贵金属铂作为催化剂,这是主要的催化剂之一。燃料电池商业化的障碍。最近,新兴的金属有机骨架(MOF)已被广泛用作自牺牲的前体/模板,以制造杂原子掺杂的多孔碳。在这里,系统地回顾了MOF衍生的杂原子掺杂的多孔碳催化剂在燃料电池中的ORR的最新进展,并提出了使用不同MOF前体制备杂原子掺杂的多孔碳催化剂的合成策略,包括MOF的直接碳化, MOF和杂原子源混合物碳化,以及基于MOF的复合碳化。重点放在MOF衍生的无金属催化剂和过渡金属掺杂的碳催化剂的前驱体设计上,因为MOF前驱体通常决定衍生的多孔碳催化剂的微观结构。讨论为通过合理设计MOF前体原位合成杂原子掺杂的碳ORR电催化剂提供了有用的策略。由于MOF结构的多功能性,MOF衍生的多孔碳不仅提供了开发高效ORR电催化剂的机会,而且拓宽了用于超级电容器和电池的纳米多孔碳的种类。重点放在MOF衍生的无金属催化剂和过渡金属掺杂的碳催化剂的前驱体设计上,因为MOF前驱体通常决定衍生的多孔碳催化剂的微观结构。讨论为通过合理设计MOF前体原位合成杂原子掺杂的碳ORR电催化剂提供了有用的策略。由于MOF结构的多功能性,MOF衍生的多孔碳不仅提供了开发高效ORR电催化剂的机会,而且拓宽了用于超级电容器和电池的纳米多孔碳的种类。重点放在MOF衍生的无金属催化剂和过渡金属掺杂的碳催化剂的前驱体设计上,因为MOF前驱体通常决定衍生的多孔碳催化剂的微观结构。讨论为通过合理设计MOF前体原位合成杂原子掺杂的碳ORR电催化剂提供了有用的策略。由于MOF结构的多功能性,MOF衍生的多孔碳不仅提供了开发高效ORR电催化剂的机会,而且拓宽了用于超级电容器和电池的纳米多孔碳的种类。